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� Relational database management system (RDBMS) 

� The number of spam emails exceeds 6 trillion in Q4 2014 
� McAfee Labs Threats Report (February 2015) 

� OrientDB: 
� Flexibility (document database) 

� Interconnectivity (graph database) 

� Scalability 

� Documents: spam campaigns, emails, IP addresses, domain names, 
attachments 

� Connections and interconnections between spam campaigns, emails, IP 
addresses, domain names and attachments  

Central Database 
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� Parser 
� Parse and store standard header fields (RFC5322) 

� Unpack email bodies (single-part or multi-part) 

� Extract embedded URLs 

� Feature Extractor 
� Content Type 

� text/* 
� multipart/* 
� image/* 
� application/* 
� etc. 

Parsing and Feature Extraction 

� Character Set 

� utf-8 
� iso-8859-1 
� windows 1250 
� shift-jis 
� koi8-r 
� etc. 

� Subject 

� Decoded to Unicode 

� URL Tokens 

� Attachment 
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� Feature Extractor 
� Email Layout 

Parsing and Feature Extraction 

� HTML layout 
� Top levels of the DOM tree 

� For example: 
<html> 
-<head> 
-</head> 
-<body> 
--<p></p> 
--<br /> 
--<div></div> 
-</body> 
<html> 

� multipart layout 
� The structure of the 

multipart email 

� For example: 
multipart/mixed 

-multipart/alternative 

--text/plain 

--multipart/related 

---text/html 

---img/jpg 

-application/pdf 

� text layout 
� T for a paragraph with 

only text 

� U for a URL 

� N for an empty line 

� For example: 
TNTNUNN 
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� Distance between two spam emails: 
� w-shingling and the Jaccard coefficient 

� Context Triggered Piecewise Hashing (CTPH) 

� Locality-Sensitive Hashing (LSH) 

� Hierarchical, partitional, neural network-based, kernel-based clustering 
techniques 

� Problems: 
� Scalability 

� Obfuscation techniques 
� Spam email templates 

� Randomly picked paragraphs from books or Wikipedia articles 

� Randomly generated subdomains and fast-flux service networks 

Spam Campaign Detection 
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� Frequent-Pattern Tree (FP-Tree) 
� The more frequent a feature is, the more it is shared among spam emails 

� Less frequent features correspond to the obfuscated parts 

� Two scan of the dataset: 
� First scan to compute the number of occurrences for each feature 

� Second scan to insert feature vectors into the tree 

� The cost of inserting a feature vector fv into the FP-Tree is O(│fv│), where 
│fv│  is the number of features in fv. 

� The Content Type feature is put at the beginning of each feature vector 

� The unique ID of each email is kept at the end of each feature vector 

� Embedded URLs are split into tokens 

Spam Campaign Detection 
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� Spam Campaign Identification 
� Traverse the tree 

� Conditions: 
� The number of children >= min_num_children 
� The average count of children >= freq_threshold 
� The path to root must contain one feature type not in  n_obf_features 
� The number of leaves of the sub-tree >= min_num_messages 

� If a node satisfies the conditions: 
� The leaves of the sub-tree are spam emails from the same campaign 
� The path from the root to this node contains the common features 
� The sub-tree is then removed from the tree 

Spam Campaign Detection 
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� Incremental Frequent-Pattern Tree 
� Spam campaigns may last for a long period of time and therefore should be 

identified in their early stage 

� Feature vectors are extracted as soon as spam emails arrive and are inserted 
into the FP-Tree from the root level 

Spam Campaign Detection 
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� IP addresses 
� From header fields 

� Received 

� X-* 

� From URLs 
� using passive DNS 

 

 

� Hostnames 
� From URLs 

 

 

� 2nd-level domains 

� Geo-Location 
� City, Country 

� ISP 

� Organization 

� Malware Database 

� Passive DNS 
� Timeslot (First/Last seen) 

� IP address(es) 

� Count 

� WHOIS 
� Name servers 

� Domain status 

� Creation date 

� Expiration date 

� Registrar & registrant 
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� Spam Campaign Labeling 

Spam Campaign Characterization 

Spam Campaign Labeling Server 

Frequent Words Relevant Topics 

Disambiguator Classifier 
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• Chooses the most suitable 
Wikipedia article for each term 

Link Detector Classifier 

 
• Selects sufficiently relevant 

associations between terms and 
Wikipedia articles to retain 

Link Detector Classifier 

Disambiguator Classifier 
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� Spam Campaign Scoring 
� An investigator may only need to pursue a particular objective 
� Each spam campaign is assigned a score computed using: 

� The number of spam emails inside a campaign 
� The number of IP addresses in Canada 
� The number of domain names that are resolved to IP addresses in Canada 
� The number of “.ca” TLDs that appear in the from field 
� The number of “.ca” TLDs that appear in the embedded URLs 
� The number of Canadian city names that appear in the content 
� The number of appearances of the string “Canada” in the content 
� The number of IP addresses that are associated with malware 
� The number of IP addresses that belong to a specific IP range 

� Each criterion has a customizable weight 
� The criteria have been verified by a law enforcement official 

Spam Campaign Characterization 
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� Spam: 
� Still a serious threat itself 

� An instrument for other cyber attacks 

� A spam campaign detection, analysis and investigation system that: 
� Identifies spam campaigns (on-the-fly) 

� Aggregates different data sources to expose campaign characteristics 

� Labels spam campaigns 

� Scores spam campaigns 

� Future work: 
� Improve spam campaign labeling (more suitable for spam contents) 

� Spam campaign categorization (threat-based) 

Conclusions 
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